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Introduction

2

• What is the Strayton Engine?
• A hybrid Brayton cycle / Stirling cycle engine concept
• Concept developed by Rodger Dyson of NASA Glenn 

Research Center

• Why investigate the Strayton?
• Benefits in efficiency and specific power may be realized by 

utilizing the synergies between the two cycles.

• Task :
• Two week micro seeding was funded to investigate the 

Strayton cycle advantages and identify key technologies and 
challenges

The purpose of this paper is to disseminate task findings
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Thermodynamic Brayton Cycle

https://www.grc.nasa.gov/www/k-12/airplane/Animation/turbpar/Images/engslo.gif

(1-2) :  Isentropic compression on a gas 
(2-3) :  Heat is added to the system, with no loss in pressure 
(3-4) :  Isentropic decompression occurs where energy can be 

taken from the system as work
(4-1) :  Waste heat is rejected
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Thermodynamic Stirling Cycle

(1-2) :  Isothermal volume expansion making use of an external heat 
source 

(2-3) :  Constant volume heat transfer heating up the regenerator 
(3-4) :  Isothermal compression with waste heat rejected to an 

external cold source 
(4-1) :  Constant volume heat transfer occurs to cool the regenerator. 
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Strayton Engine

• Single shaft turboshaft with stirling engine embedded within the shaft
– Thermal acoustic Stirling engine 
– Energy moves from the Brayton cycle gas path into the Stirling through turbine blade 

heat transfer
– Stirling waste heat is reintroduced to the Brayton cycle before the combustor
– Work is gathered from a dual-axis generator (rotational work from the Brayton engine 

and axial work from the Stirling engine)
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• Simulation created within the numerical propulsion system (NPSS)
– NPSS native turbomachinery elements used for Brayton cycle engine components
– Stirling cycle engine assumed to be a heat engine with an efficiency of 50% Carnot

– Interaction between two components managed through power movement into or out 
of the NPSS duct component
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Simulating the Strayton Cycle

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 1 −
𝑇𝑇𝐶𝐶
𝑇𝑇𝐻𝐻



National Aeronautics and Space Administration

www.nasa.gov

• Thermal modeled as:
– Brayton hot side heat transfer through turbine blades 

• Modeled as convection over flat plates
– Heat was transferred to and from Brayton and Stirling engines using oscillating heat 

pipes (OHP)
• Modeled using an assumed heat transfer coefficient

– Stirling hot and cold side heat transfer 
– Brayton cold side heat transfer applied into stage 3

• Modeled as  a heat exchanger with constant effectiveness

Thermal circuit modeling

7
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Effect of Brayton cycle engine design criteria
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– Thermal efficiency rises as 
temperature increases

– Strayton benefits larger than 
Brayton only benefits due to 
system synergies

• Designed turbine blade 
temperature limit

• Overall Pressure ratio
– Thermal efficiency rises as 

temperature increases
– Brayton cycle benefits greater 

than Strayon due to increases 
in T3 which reduce the Stirling 
temperature ratio.
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• Stirling power fraction : 
– Increases in power fraction achieved by increasing power flow through the hot section, but 

only up to a point.
– Inflection occurs when the drop in Stirling efficiency, due to a reduction in Stirling 

temperature ratio, begins to outweigh the effects of power flow increase
– Overall Strayton efficiency drops as the Strayton power ratio continues to reduce 

Effect of Stirling design power

9
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• Temperature vs. power flow to the hot side of the stirling
– Blade cooling

• Constant Blade cooling shows increase in Stirling blade cooling effect
– Reduction of Stirling temperature ratio

• As power flow increases Stirling temperature ratio decreases which reduces the efficiency of the 
Stirling (Note: there is an assumed required 1.4 temperature ratio for the Stirling to operate)

Strayton Temperature profiles

10



National Aeronautics and Space Administration

www.nasa.gov

Optimized systems 
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• 2 power levels where analyzed for this study, 200 HP and 670 HP
• Baseline  Brayton cycle and Strayton cycle concepts were developed for comparison 

purposes, Tblade = 2750 °R

• Efficiency gain of ~10% and ~3% at 200 HP and 670 HP power points respectively

Total 
Power 
(HP)

Brayton 
Power 
(HP)

OPR T liner 
(°R)

Efficiency SFC
(lbm/HPh)

Air Mass Flow 
(lbm/s)

200 200 6.5 2750 0.24 0.566 1.11
670 670 10 2750 0.29 0.433 3.23

Total 
Power 
(HP)

Brayton 
Power 
(HP)

Stirling 
Power 
(HP)

OPR Tst,H
(°R) 

Tst,C (°R) T liner 
(°R)

Efficiency SFC
(lbm/HPh)

Air Mass 
Flow 

(lbm/s)

Stirling 
Temperature 

Ratio
200 166.62 33.38 6.5 1598 1141 3167 0.33 0.402 0.87 1.4
670 640 30.01 10 1761 1246 3117 0.32 0.394 2.57 1.41

Brayton Cycle Engines

Strayton Cycle Engines
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SFC comparison
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Specific power comparison
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Stirling controls model
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• Dynamic Stirling controls model (DSCM) based on Ohio University 
Stirling Engine Analysis (SEA) software, within MATLAB
• Design parameters of compression and expansion  swept volume and 

clearance volume, cooler, heater, and regenerator size, Stirling frequency, 
operating fluid, and pressure were tuned to meet predicted power, Stirling 
temperature ratios, and efficiency taken from the NPSS model. 
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Stirling controls model
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• Operation begins at the design point and reduces power and adjusts 
stroke length

• Strayton efficiency 
maximized when 
stroke length reduced 
as stirling power is 
reduced

• Efficiency increased 
by up to ~3%

• Highlights requirement 
for a coupled method 
of control and potential 
off design efficiency 
benefit to the system.

Strayton Power Output (HP)
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Key technologies
High temperature materials
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• Key to efficient and higher power Strayton is developing 
higher temperature turbine components.
• Currently, low power turbine engines operate with a T4 around 

2000 °R for maintenance and cost benefits
• This study examined potential turbine blade temperatures of 

2750 °R and liner temperatures of 3200 °R, which are more in 
line with large gas turbines with robust blade and liner cooling 
mechanisms.

• To achieve the required temperatures materials must be 
developed to allow greater hot side temperatures at a 
low cost

• Research in high temperature ceramics has shown promise, 
with next-generation ceramic matrix composites expected to 
reach roughly 3200 °R

• Additional thermal coatings could raise this to 3500 °R
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Key technologies
Stirling Engines
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• New Stirling technologies will need to be examined
• High power Stirling engines

– Thermal acoustic stirling development
– Multi-stage Stirling

• Reliability of stirling engines (Gas turbines typically run for 1000s of 
hours)
– Rotating Stirling

• Installation/manufacturing of Stirling within a gas turbine shaft

• Maintainability of Stirling that support line replaceable unit (LRU) 
access and removal
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Key technologies
Blade cooling / Heat exchangers / heat pipes
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• Heat transfer technologies: 
Gas turbine to Stirling heat exchanging

• Rotating/ no pressure rise heat exchanger to increase heat transfer 
on cold side of Stirling

• Safe and efficient heat pipes usable at high rotational speeds and 
temperatures. 
– Non-volatile medium materials

• Turbine blade thermal transfer materials or coatings to optimize the 
ratio between turbine blade cooling effect and Stirling power transfer.
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Key technologies
Coordinated control system
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• Ability to operate transiently through different 
power levels and within the operational envelope

• In a typical gas turbine engine component temperature transients 
can extend into minutes, while customer power demands may 
need to be met in seconds. 

• Strayton control system must manage this disparity to guarantee 
power as requirements demand. 
– Maintain stall margins and temperature limits during transient operation 

utilizing potential control effectors, such as fuel flow, and Stirling stroke 
length

– Identifying required control methodology:  sensor suite, potential 
operational schedules.
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Summary and Conclusions
• The Strayton Engine: Brayton cycle, Stirling cycle hybrid 

engine concept.
– Cycle analysis shows significant efficiency gain over the Brayton cycle 

only engine with increasing gains as temperature is increased.
• With a 10% increase (over the Brayton cycle only engine) in efficiency at 

200 HP engine level 
– Generally greater efficiency gain for lower power generating engines 

because Stirling power level scales with temperature ratio, not Brayton 
power production.

– Controls study demonstrates system sensitivity to design parameters 
and illustrates Stirling off design operation

20

• Key Technologies
– High temperature materials
– Stirling Engines (manufacturability, maintainability, high power capability)
– Heat transfer (rotating heat exchangers, heat pipes, turbine blades)
– Coordinated control system (seamless operation between systems with very 

different time constants)
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